ARP Fieldwork by Alison Martin

For my applied research project, I’m studying the blue carbon dynamics under different environmental conditions in tidal marshes across the Metro Vancouver region. Tidal marsh ecosystems are considered to be a natural resource of global significance as they are provide numerous ecosystem services. One of these ecosystem services is their ability to sequester and store large amounts of atmospheric carbon, or ‘blue carbon’. Blue carbon is a recently coined term that refers to carbon that has been removed from the atmosphere and stored in the sediments of coastal and marine ecosystems and these marshes can be highly effective carbon sinks when the ecosystem is healthy. However, tidal marshes are under high levels of pressure due to anthropogenic stressors and are declining by about 5% per year worldwide. As the ecosystem is degraded, they shift towards becoming carbon source, as they release more carbon into the atmosphere than removing from it. My project will also be looking at potential restoration techniques that can increase the health of the ecosystem, therefor, increasing its ability to sequester carbon.

For the past couple of months, I have been collecting sediment cores, as well as vegetation and salinity data, from multiple tidal marshes in Metro Vancouver. We will also be collecting greenhouse gas emission data in the next couple of weeks. The marshes I have selected are under different environmental conditions so that I can develop an understanding of how these conditions influence the marsh’s carbon sequestration ability. One of the marshes that I have selected is a man-made marsh in Tsawwassen to develop an understanding of what restoration techniques can be used to increase carbon sequestration in these ecosystems. Once the cores are collected, they are taken to the Parks Canada lab to be analyzed. The cores are sub sectioned and then placed into an oven for three days and then burned in a furnace to determine carbon loss on ignition. Some of the cores have been sent off for radiometric dating to determine the carbon accumulation rate of the marsh.

As a result of covid-19 restrictions, I was not able to conduct my research during this past summer but being able to get away from the computer screen and be in the field has really made the past semester much easier. Research during the fall and winter is a bit more challenging but I have lucked out (for the most part) and have had some beautiful days out on the marsh.